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Electronic fluctuation and the van der Waals metal

By N. W. ASHCROFT

Laboratory of Atomic and Solid State Physics, Cornell, University, Ithaca,
New York 14853-2501, U.S.A.

PN

Interactions determining the structure of condensed matter can systematically be

) 1\1.\»1 developed starting with the fundamental view of such systems as neutral canonical

— ensembles of nuclei and electrons and proceeding to the more common viewpoint of

§ P ions and valence electrons but retaining in both the dominant fluctuational effects
~ normally omitted.

® =

R~

= O .

T O 1. Introduction

w

The purpose of this paper is to show that on energy scales apposite to structure in
metals, bonding energies associated with electromagnetic fluctuation can be
significant. In lowest order these fluctuational effects are almost universally referred
to van der Waals interactions (the neutral atom case with retardation effects
neglected was first worked out by London (1930)). The terminology will be extended
here to systems possessing charge which is free in the normal electromagnetic sense.
The issue is therefore the degree to which fluctuations in both bound and free charge
can be manifested in bonding, structure, and in ordering.

The importance of electromagnetic fluctuation in the cohesive properties of the
metallic state has earlier been emphasized by Rehr et al. (1975) and in a detailed
proposal for pair interactions by Mahanty & Taylor (1978) and by Mon et al. (1979).
The subject has recently been reviewed by Barash & Ginzburg (1988) with a focus on
overall energetics. In what follows fluctuational effects are examined as a possible
source of correction on energy scales that in some cases can rival those that are
associated with standard mean-field-based interactions.

PHILOSOPHICAL
TRANSACTIONS
OF

2. Condensed matter as a two-component system

The emphasis is to be placed on measurable structure, and it is therefore necessary
to introduce from the outset a notation which links immediately to observable
structural quantities. These are the one- and two-particle densities for electrons

- and nuclei respectively; later it will be necessary to introduce the n-particle
§ P generalizations for the composite objects referred to normally as atoms or ions.
ol For convenience the discussion begins with a macroscopic volume Q of an elemental
M= system, atomic number Z,, with N, (10*®) nuclei of mass m, having instantaneous
- 5 coordinates ry,, ..., #,y . In a neutral canonical ensemble, there will also be present
T O N, = Z, N, electrons, of mass m, having instantaneous coordinates 7, ..., 7oy . For
— particles of type a (a = e,n) the one particle density operator is
- a Ny
5% PP (r) = T o(r—ry) (1)
I— ?
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408 N. W. Ashcroft
whose quantum statistical average over states of the entire system is
PO = L) (2)

and it has the meaning that p{"(r) dr is the probability of finding, at a given instant,
a particle of type o in dr at . At the level of electrons and nuclei (Chihara 1985) there
are at most two-particle interactions; accordingly the two-particle density operator
is also introduced

PR (r, 1) = PP () PO (r) — 8y P50 (r) O(r — 1), (3)
whose corresponding average is
PR(r,¥) = PR (r, 7)), (4)

which has the meaning that p{f(r,#’)drdr’ is the probability of finding particles of
type o and B simultaneously in dr and dr’, which are themselves separated by r—r".
For the length scales appropriate to the condensed state of matter, the nuclei are
taken as point objects.

The problem is simplified in an inessential way by viewing the system as non-
relativistic. If v (r) = €?/r is the basic Coulomb interaction then the hamiltonian of
system of electrons and nuclei can be written down, using (4) as

H=3{L413 | ar| arno-nzzi50-0) )
o B JQ Q

where Z, = —1 and Z, = Z,. Here T, = (—#%/2m,) 2, V%, are the kinetic encrgies;
there is no explicit reference to spin. The notation introduced readily permits

extension from elements to alloys or compounds.

3. Reduced hamiltonian

For elements with a relatively small number of electrons per nucleus it is now
becoming possible to apply many-body quantum Monte-Carlo simulation techniques
directly to (5) (Sugiyama et al. 1989). But with the possible exception of hydrogen
(Z, = 1) (Ashcroft 1981), or with the exception of elements placed under conditions
so extreme that all N, Z, electrons are unbound, a description of condensed matter
proceeding from (5) is not entirely appropriate. Rather (5) is modified to reflect what
is known already from atomic physics, namely, that under ordinary conditions there
is considerable condensation or agglomeration of electronic charge around the nuclei.
In particular, for vapour phases of (5) the electronic density p&’(r) = {pP(r)) is
extremely close to that of essentially isolated atoms. Such struoture as p(l)( r)
possesses is just the ‘shell-structure’ of atomic physics (though p{P(#) is in fact
remarkably devoid of structure) and, extreme conditions excepted, much of this shell
structure is immune to passage of the element from vapour to condensed state. It is
therefore useful to make a division of p{(r) into contributions arising from electrons
that will exist in states dominating most aspects of the physics of condensed matter,
and the remainder to be found in states bound at energies far larger than are
characteristic of the condensed state. The exchange terms introduced by site
identification can be incorporated within approximations that amount to a
redefinition of the primary interaction, and especially its high ¢ components (since

Phil. Trans. R. Soc. Lond. A (1991)
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Electronic fluctuation and the van der Waals metal 409

exchange manifests itself mainly at short range). This point of view will be adopted
below, in (11a).

The notion of valence, as applied to condensed matter must clearly be state
dependent since site localization carries with it a presumption that orbitals exist
whose range or scale is known. If external conditions are later imposed that require
nuclei to approach closer than the diameter of such orbitals, then the system will be
brought close to and beyond the onset of a Mott transition for this set of electrons.
It is then appropriate to include them in the valence set, the next lower orbitals (and
those below them) now constituting the localized charge. The general concept of
electron-derived interactions is therefore necessarily a function of density even
though for many applications this state dependence can plausibly be ignored.

With these restrictions in mind the one-particle electronic density operator is
written

ZN, Z,
PO(r) = X 8(r—re)+ 3 X (r—ry—rly), (6)
i=1 J i=1

where a number Z,, (of the Z, per nucleus) electrons is to be in the localized (or ‘core’)
class as described above, and the remainder Z = Z, —Z, per nucleus are taken as
valence electrons. If static conduction is eventually found to take place in the states
of H, the processes will involve only the valence electrons. In what follows Z,, Z (and
obviously Z,) are all taken to be conserved quantities.

By an ion is now meant the usual composite object formed by a nucleus together
with Z, electrons considered to reside in the localized states of H. To this ion can be
assigned a site hamiltonian %;, which includes all electronic kinetic energies, all
mutual Coulomb repulsions, and all Coulomb attractions with the nucleus. To
explore the fluctuational aspects in detail, it is particularly expedient to introduce a
site density operator

ZC
f;]('l)(r):Za(r_rnj)'*"zez§(r_rnj_r23i)' (7)
The meaning of p{V(r) is apparent from its Fourier representation
Z, )
P5P(q) = exp (ig - ryy) {Z + X (1—exp (iq'réz-))}, (8)
i=1

which displays the number-fluctuations about the average valence Z. At long range
(g>0) )
oV (q) ~ exp (iq - ry) {Ze+id; g +...}, 9)

where relative to the nucleus at 7,

N

c

‘zf =X (—e)r

-
I
-

is the instantaneous dipole operator giving the leading multipole correction to the
standard monopole, Ze, normally assumed for such an ion
The valence electron operator is defined by

NV
PP(r) = X 0(r—re), (10)
i=1
Phil. Trans. R. Soc. Lond. A (1991)
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410 N. W. Asheroft

where N, = ZN,. With these definitions the original hamiltonian (5) can be rewritten
in a form appropriate to a description of the metallic state, namely

§ —é 2 PP p (=) v(g) (11a)
+T+ E(P‘vl’( ) AP (—q)—N,)ve(q) (11b)
——EP“’( ) AP (—q) (), (11e)

where v,(q) = 4me?/¢* and

NV
PP(g) = T exp (ig-re).

i=1
Here #(q) incorporates the corrections, to v,(¢), for core-core exchange alluded to
above. By an extension of those arguments, there is also core-valence exchange:
further, in the eventual states of H, core and valence (localized and itinerant) states
are orthogonal. Again, these effects are included at the level of the hamiltonian in
(11c¢) by the replacement of v (q) by w(g), a pseudopotential (Heine 1970). In general
w is a non-local operator; for small ¢, Zw(q) & Zv.(q). The pseudopotential concept is
by no means limited in its usefulness to simple sp metals, but has also been extended
to transition metals by Moriarty (1990), and also applied in such systems to the
determination of multi-centre potentials.

It is the manifestation of electromagnetic fluctuation associated with the reduced
hamiltonian (11) that is of primary interest in what follows. For the most part, the
length scales of interest are a few lattice constants and therefore retardation effects
can be neglected. Observe that the reduced hamiltonian (11) can easily be extended
to an alloy or compound metal by noting that the equivalent of (8) for component
o will be

ZC&
P (4) = exp (ig 1) {Za+ % (1—exp (iq'rZ’;»},

=1
where Z is the nominal valence of each component. Charge transfer in compound or
alloy formation is encompassed by assigning appropriate values to Z, (negative
values are permitted, for example). For either the single or multi-element case, (11¢)
contains within it the physics of fluctuational attraction of an electron to a localized
charge distribution and hence to the notion of electron affinity (or electronegativity).

If dipolar terms are taken to dominate the fluctuations (and hence in the expansion
of (8)) then (11) becomes

N

H— Zizj T + fdrjdr’ﬁffg v(r—r)+1 Z drfdr d V)(d V,)o(r—+)
=1
] (11d)

+1 + fdrjdr’ﬁ(fgrr (r—r) fdrjdr”‘“ PP Yw(r—r) (1le)

=

+2Jdrﬁ(vl>(r) (d;-V,) w(r—r). (1Lf)
J

Phil. Trans. R. Soc. Lond. A (1991)
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Electronic fluctuation and the van der Waals metal 411

It should be apparent that correlation effects from on-site physics are essential to
(11). In this respect both the description to follow, and its consequences, differ
notably from the standard Hubbard model where site-fluctuations are eliminated
from the outset. The manifestation of polarizable ions in effective interactions have
previously been explored for ionic crystals in what is known as the shell model
(Roberts 1950).

4. Mean-field effective interactions

Implicit in the introduction of the site density operator p{"(r) (see (7)) is the
adibatic (Born—Oppenheimer) separation of timescales. For most purposes it is
admissible. to proceed on the solution of the states of (11) by solving an electron
problem in which the nuclear densities pV(r), p@(r, #') are regarded as parameters.
For the majority of electron states the adiabatic principle can be invoked (Moody
et al. 1989). Within this assumption the notion of an effective hamiltonian controlling
ionic motion can be developed by tracing out the electronic states (e) for each ionic
or nuclear configuration (e(n)). The partition function for the system than has the
form (f=1/kgT)

Z=7(2,T)=Tre "
= Trnexp(_ﬂHeff(rni’ ""rnNn;‘Q:ﬂ)) (12)
with Hy = —kpTInTryy exp (— BH({re;; 7y5)).

In this form, the effective hamiltonian would include, in principle, contributions of
entropic origin from the electronic subsystem. For many applications, however, the
chosen thermodynamic conditions are such that the electron system is very close to
its ground state, ¥, say, and if this is so the implied ground state trace leads to

Heff({rnj};g = T +V( nil» *** rnN ;Q)’ (13)
V(rnl’ ""rnN ’ <¥l (n)‘H qule(n)> (14)

which is a many-body potential energy function. This result is not different from
what is expected by application of the same argument to a few-body problem, say
a molecule. The electron problem appears now in terms of the more familiar language
of bonds which an appropriate resolution of V({r,;}; ) defines.

In confronting the interconnected issues of bonding and structure the assumption
is usually made that V({r,};£2) can be developed in a form

V{ry;};£2) = f(« 2Z ¢(2) )+ 57 %kfﬁif'x)c ) (15)
Z

where f(£2) is a function of volume only (see below) and where the pair, (¢?), triplet
(¢@)..., potentials are assumed to be transferable between configurations, as
discussed earlier. This assumption is far from obvious, and in fact is probably not
generally correct. So far as the electrons are concerned, there can be no reason to
suppose that in the treatment of the statistical mechanics of the ion or nuclear
system, conﬁguration independence of the ¢™ is guaranteed. The existence of
transient bonding in metallic liquid states of the traditional semiconductors Si and
Ge is already evidence of this (Ashcroft 1990; Stich et al. 1989). This point is of some
importance to exercises where attempts are made to invert structural information in

order to extract forms of ¢, especially ¢®.
For many metals, and also their alloys, it is common practice to assume that the
dynamical units of primary statistical concern are single ions, and that associated

Phil. Trans. R. Soc. Lond. A (1991)
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412 N. W. Ashcroft

with those units are transferable potentials ¢ . Among the simplest of such systems
are the sp metals typified by the light alkalis, Mg, Al, and so on. For these it is also
usually assumed that the ions are electronically rigid, that is, that the site
fluctuations specifically retained in (11a) and (11¢) are either ignorable or treatable
in a mean-field way. The validity of this assumption will be taken up below, but for
the present it is sufficient to note that the approximation being made is rendered by
the statement

P57 ()~ <p5P (@) = p; (q) = exp (ig 1y 9(q) Z, (16)
where g(q) becomes a static form-factor for the ion in question (at high ¢,g(q) > 1).
Within the same approximation h is replaced by K;, a constant, which can be
removed by redefinition of the energy origin. Thus by ignoring electromagnetic
fluctuation in the ions the hamiltonian now becomes

7 m o, L A A
50 S D@ (=)= Ny 200 (17a)
7, +$z<p9><q>p9>( 9)—N,) (0 (17b)
Zp‘”( )P (=) (@), (17¢)

where the definition of #(q) is now extended to include g(q) as well. This form of
hamiltonian is used both in simulation studies (for example, in the method of Car &
Parinello (1985)) and also as the starting point for the formal development of
multicentre interactions ¢ in the metallic state. The latter proceeds (Ashcroft &
Stroud 1978) by separating the ¢ =0 terms in (17), which are always large,
introducing a coupling constant in (17c¢), and introducing the mth order static
response functions x™(q,, ..., q,,;2) of the homogeneous electron gas hamiltonian
(essentially (17b) with ¢ = 0 terms removed). Then (Ashcroft & Langreth 1967;
Brovman & Kagan 1970)

Hep = Tt -5 (50(9) p0(— q)— N,) 225(q)

20
1 1
7 (A(DYy . Am)
+Eo(pe )qu’ﬁq o (G1s o Gm) W(Q) W(G) - .. W(Qry)
xpP(q) pP(q) - PP (@) 0(g+4q1uq,,), (18)

where E(p{?) is the ground state energy of the interacting electron gas at the prescribed
density p(l) = N,/Q together with the ¢ = 0 residues. Note that the static response
functions also depend on this density so that for the assumed metallic state, the form
of (18) is just a slight generalization of (13), namely

Heff_T +.f +V Fpis--os rnN ;Q)’ (19)

where V is a state dependent many-centre potential defined via (18), and f(Q) is a
function solely dependent on density and not-derivable from sums over n-atom
potentials. In the mean-field view, structural distinctions are made on the basis of
the corresponding 7, a many-atom quantity. However, since a system of crystalline
symmetry has been developed from a translationally invariant problem, the Fermi
surface may not necessarily be given correctly. Correspondingly, the expansion (18)

Phil. Trans. R. Soc. Lond. A (1991)
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Electronic fluctuation and the van der Waals metal 413

is then not necessarily analytic, as is known from direct summation of energies in
two-band and related models. Non-analyticity is also a feature of the tight-binding
approach (for example, in the dependence of energetics on coordination number).

The series represented by (18), from which pair and multicentre interactions can
now be defined (V. Heine, this symposium), may be termed the mean-field result in
view of its neglect of fluctuations. It has been discussed in a detailed review by
Hafner (1987) and is also treated extensively in this meeting. It is sufficient to note
that the pair term, also intrinsically state dependent, already has the form

7262 22, [, sing flq) [ w(g) \?
) _ _ 2y
¢ Q) == {1 n f g e(q,m(Zvc(q))}’ )

where the requisite linear response function has been written

XP(q) = (—kig/4me?) f(q),

where k; is the Thomas—Fermi wave-vector, ¢ the static dielectric function of the
electron gas, and f(q) contains all corrections (for exchange and local fields) beyond
this. It is clear that at ionic separations typical of a metal, the first term in (20) leads
to energies in the range of rydbergs. Yet calculated values of ¢®(r; ) are in the
millirydberg range, establishing thereby that at the level of linear response, only, the
second term in (20) cancels the first to within parts per 10%. For this reason alone
contributions to structure and bonding from higher response both static and
fluctuating are important to consider. The millirydberg scale of the pair potential
represented by (20) provides a useful base for comparison of fluctuation based
interactions.

5. Fluctuation-based interactions

The extent to which the mean field approximation implicit in assumption of an
electronically rigid ion core constitutes a meaningful approximation is ultimately
controlled by the magnitude of the corresponding ion polarizability «(w) in a
specifically metallic environment. It is known that the polarizability of a free ion
differs from that of an ion placed in a metallic environment, but unless conditions are
chosen close to the onset of a Mott transition these changes are not large (Nieminen
& Puska 1982). The values themselves can, however, be substantial («(0) = 5.7aj for
K*, for example) and the assumption of electronically rigid cores, even for some
relatively common systems is therefore often difficult to justify, @ priori. It should
be remembered that a process of local polarization represents a physical mechanism
in which by fluctuation charge is separated in space. Since relative displacement is
involved, the process is not local and thus not representable by local approximations
to true energy functionals. The point being made here is that for fixed p{* or p2), the
electronic problem defined by (11b) and (11 ¢), and subsequently reduced to (17b) and
(17¢) is also the starting point for density functional methods. Density functional
theory and its applications has been reviewed recently by Jones & Gunnarsson (1989)
(see also Srivastava & Weaire 1987). Since information on exact functionals for
inhomogeneous systems is lacking, approximations are usually developed that utilize
the properties of the homogeneous counterpart, mainly, however, through local
approximation. This approach can only include in an average way the polarization
effects that are being addressed here. Similar considerations can clearly apply when

Phil. Trans. R. Soc. Lond. A (1991)
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414 N. W. Ashcroft

charge is displaced by the polarization processes that accompany the excitations of
electrons across the gap of a semiconductor.

For cohesion of the condensed state, in particular, the role of electromagnetic
fluctuational effects in energetics, has been treated in depth by Barash & Ginzburg
(1989). Here the focus is on the more specific problem of the detailed physical form
of the microscopic interactions contributing not only to cohesion, but more especially
to bonding. The most familiar case occurs when the system is taken to consist of
entirely localized charge (Z = 0 in (8)) for which (11a) is then the only surviving term
in the hamiltonian. Then as first shown by London (1930) the pairwise contribution
that results is given at long range by

© dq . . az 2 2 2
Brawlr) =~ f —Q;t“famw)ag(lw){( g;g”) +—(9%£—’"))} (21)

2
0 r

(see also Slater & Kirkwood 1937). Here r is the separation of the two localized
systems whose frequency dependent polarizabilities are o, (w) and o,(w). An intuitive
and simple limit of (21) results when the polarizability is dominated by a single
excitation energy 4. For identical ions the result is approximately

By aw(r) = —34(ai/7)®, (22a)

where o is the static limit of a(w). This form for ¢, 4, can be used to establish the
energy scales for fluctuation based interactions in relation to their mean field
counterparts whose densities are fixed in the main by f(Q2) (see (17)). Evidently if 4
is a few rydbergs, r a few a,, and « for an ion a few al, then from (224a)

Pyaw ~ 0(107%) Ryd. (220)

Detailed comparison with (20) requires VAW specification if material dependent
parameters (pseuodpotentials, densities, and so forth), but it is nevertheless apparent
that the fluctuational and mean-field scales can be comparable. This has also been
noted in an entirely classical context. In the example of ionic systems, Woodward
et al. (1988) have shown that thermal fluctuations in mean-field response charge in
counter ions assembled around macro-ions can lead to very significant dipole-dipole
attraction.

The argument just given does not change in an essential way of the neutral atoms
are now replaced by a neutral canonical ensemble of ions and free charge, once again
represented by the full hamiltonian (11). Polarizabilities are generally smaller in
positive ions than they are in the corresponding neutral atoms, but can be very
significant, especially if the ion possesses a filled d-shell. From the expansion of the
site charge (8), it is clear from the interaction (11¢) that a monopole will be coupled to
charge fluctuations on neighbouring ions. The ensuing attraction is effectively a two-
particle limit of a more general three-particle interaction (see below). If the external
monopole were chosen to be an additional electron the interaction would be
considered part of the electron affinity (or electronegativity). At long range the
attraction, for a monopole + Ze, has the well-known form

Bumalr) ~ = (Ze* /1) (@3/7)’, (23)
which has a scale similar to (22a); like (21) it must be terminated at short range by
exchange repulsion. In highly symmetric structures the corresponding energies tend
to cancel as can be seen from their formal origin as three-body interactions (Mon
et al. 1979). For systems lacking such symmetry (quasi-crystalline states, or metallic

Phil. Trans. R. Soc. Lond. A (1991)
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Electronic fluctuation and the van der Waals metal 415

glasses, for instance) the contributions from (23) can also be significant compared
with the standard mean-field result (20).

In considering ions and free charge, rather than neutral atoms, terms (114) and
(11¢) in the fluctuation hamiltonian lead immediately to additional modifications to
the conventional lowest-order dispersion results (21) and (22). Let ¢(q,w) be the
frequency dependent dielectric function of the uniform interaction electron gas. Then
by including the screening of localized fluctuations (21) is replaced by

N oodw dq dq/ 9/ . ,os . " L \2
braw(r) = f = f o f s %9 2ld 10) vly i) exp g +4') ) g q ) (24a)
(Mahanty & Taylor 1978; Mon et al. 1979; Maggs & Ashcroft 1987). Here v (g, ) is
the screened Coulomb interaction

Vse(q, 0) = v.(q)/€(q, ).

Once again, if core-fluctuations are dominated by a single frequency 4/#, and if a
simple hydrodynamic form for ¢(q, w) is used, then the van der Waals interaction in
a metallic environment is characterized by a scale

Pyaw(r) = —14(2*(0)/7%) (4/ (4 + hwy))?, (24b)

where w, is the plasma frequency of the three-dimensional electron gas (and hence
1/w, the corresponding characteristic timescale for adjustment of its microscopic
fields). When 4 /% > w, it is physically obvious that the electron gas can respond only
weakly to fluctuations in the core; the expected limit, (22a), is therefore readily
obtained from (24b). It is clear that for realistic choices of «, 4 and fiw,, the scale of
(24b) may not be very different from (22a).

It is worth noting that in addition to the pairwise contributions (24) which has
structural significance, there are also fluctuation contributions of a structure
independent character. One example is the coupling of the zero-point motion of the
multipole operators of the localized charge, to the plasma oscillations of the itinerant
charge. If the linear response function of the latter is y(¢q, w) then the contribution
corresponding to dipolar coupling is

0

_ dg
@) = 4 [

(9, i) a(iw) ve(q). (25)

As shown by Maggs & Ashcroft (1987) this can be a very substantial energy, typically
above an electronvolt per electron for reasonable values of . It quite clearly owes its
origin to electronic correlation: in the mean-field sense of band theory it is partly
included in the cohesive energy through the self-consistent construction of the one-
electron potential. Finally, with respect to the form of valence electron coupling,
(11¢), some especially interesting comparisons can be made between displacive and
fluctuational polarization for the case of crystalline order. These bear significantly on
the question of electron ordering and are taken up briefly in the appendix.

6. Fluctuational interactions and nonlinear response

The dominant contribution to a(w) in an isolated atom is attributable to its outer
valence electrons, i.e. to those that are least bound. Suppose that with others this
atom then forms a condensed state that is found to be metallic. The valence electron
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charge, previously localized, has become itinerant; this component of the total
electron density was designated earlier as {p(r)>. In a metallic context it is
conventionally referred to as screening charge, even though it is recognized that close
to the nucleus its form is still reasonably atomic in character. Interstitially it departs
from atomic form; nevertheless exactly the same question can be asked about the
dynamic or fluctuational structure of p{"(r) that led in the earlier atomic context to
van der Waals attraction.

Consider, first a single ion immersed in an otherwise uniform interacting electron
gas. A static distribution p{P(r) is established around the ion by the arguments given
above; it is spherically symmetric. The embedding electron gas is characterized by
a response time w,—the equivalent of 7/4 for the atomic case—and on timescales
shorter than this, there will be microfields relative to a positive background with a
full set of multipole components.

Suppose that a second ion is now introduced; it establishes its own screening
charge, and once again these will also have a multipole decomposition on timescales
short compared with w,. These observations are already sufficient to show that the
arguments given for the atomic case, where the outer valence charge was considered
localized but fluctuating, can be repeated for the case of screening charge. The
viewpoint is actually very little changed; fluctuating multipole attraction is now
identified with certain higher-order response terms. In fact, Maggs & Ashcroft (1987)
have referred to this picture as one involving the fluctuation of pseudo-atoms,
thereby extending into the dynamic régime the earlier static pseudo-atom concept
of Ziman (1967). The viewpoint is an especially useful one in the context of
metal-insulator transitions of the band-overlap type since the fluctuating dipole
interaction is the embodiment of fluctuation physics that is common on both sides
of the phase boundary (Ashcroft 1990; Goldstein et al. 1989).

The simplest application of this picture arises when a simple monopole (a rigid ion,
or an electron) is found in the neighbourhood of a fluctuating pseudo atom. For this
situation the corresponding contribution to a pair interaction has actually been
discussed already, for it is nothing but the two-site limit of those terms in the
response sequence (18) that are beyond linear. With this observation the source of
attraction underlying the chemical concepts of electron affinity or electronegativity
is also identified. It may be noted in passing that a qualitative association between
the interaction of an electron with higher fluctuation processes and the occurrence of
superconductive ordering has already been recorded by Luo & Wang (1987) (in the
language of electron affinity) and by Ichikawa (1989) (in terms of electronegativity).

More interesting is the case where fluctuations on two sites are coupled; here a
direct equivalence to (21) or (23) emerges except that the fluctuations originate with
screening charge which in more common approximations is regarded as static. In the
three dimensional examples so far considered, the corresponding contribution to
pairwise interactions is

d .
¢ff( f f 1 f 21.[ 3 sc(q+q lw) (q ’ _lw) ws(q)
X[APD(g+q,iw;q’, —iw;q,0)]?el9", (26)

where wy(q) is now a statically screened pseudopotential. In (26) A® is the irreducible
three-point function of the electron gas (Cenni & Saracco 1988). For small g and ¢’
it behaves as (1/w?)q-q" which may be compared with (x(0)/(w*—4%))q-q" as
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appropriate in the simplest approximation to the localized case. The analytic
behaviour of ¢ (r) is again a power-law attraction at long range (ca. —1/7% in three
dimensions). Dimensional analysis refines this power law to

Pus(r) ~ — 27 7'2/7'6 (27)

in atomic units. Here A(r,) is any dimensionless function of density (3nr2ad = 1/p)
and is typically of order 107% (Maggs & Ashcroft 1987). The possible numerlcal
significance of higher-order dynamic processes has been noted by Rasolt & Geldart
(1975) and also by Langreth & Vosko (1987) who also show that higher-order terms
modify (27) still further but only to the extent of a logarithm. The magnitude of the
fluctuation attraction (relative to mean field) is traceable to the fact that static
screening is always constrained by the perfect screen sum rule (lim,,e™*(¢,0)—0).
This constraint does not hold at finite frequencies so that static interactions which
involve intermediate higher-order processes can be stronger than their formal order
might suggest. The major physical consequence is that in addition to mean-field
results typified by (20), corrections arise from electromagnetic fluctuation in both
localized charge (see (23)) and in response charge (see (26)). These can be expected to
have structural significance according to circumstance, even though they may
contribute little to overall cohesion in a metallic state.

7. Fluctuational attraction in the homogeneous and inhomogeneous
electron gas

An attractive interaction, entirely equivalent to (26) also exists between electrons
in the three dimensional electron gas, as shown also by Maggs and Ashcroft (1987).
The underlying physical origin is also equivalent: around any electron is formed a
static distribution of response or correlation charge (62 (o,r)) = p{Mg(r), where g(r)
is the pair correlation function. If the electron and surrounding correlation charge is
then probed by another electron whose function is to serve as a test charge, the
standard static screened interaction results and it is this combination that is
controlled by the perfect screening sum rule. However, if the test electron is also
accompanied by its own screening charge then fluctuations in both screening charges (or
correlation shells) lead by the arguments in .§.6 to the long-range attraction

d /
Penr(7) J f 1 JSZ)?» Vo (@ + g, 10) v (¢, —1w) v (¢, 0)

X[AP(q+q ,iw;q’, —iw;q,0)]2e 1" (28)

and once again dimensional analysis in combination with the resulting 7~* power law

give
Pesy(7) / rs)

This term, which is significant in magnltude, goes considerably beyond what is
expected on the basis of random-phase or related approximations to the local field
problem in the interacting electron gas. Power law decay is clearly of a different
analytic character from either the exponentially decaying (Thomas-Fermi) or
Friedel oscillatory behaviour (Lindhard) which typify approximations to effective
electron—electron interactions that normally ignore fluctuations. Its origin lies with
physical processes that cannot be correctly included in the standard local applications
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of homogeneous electron gas results to inhomogeneous problems. Again, this is
because polarization is fundamentally a process involving the relative displacement
of charge, and as such is not local

Given this observation, and the product structure of the kernel in (28) an
approximation that is useful in the inhomogeneous context can, however, be made.
This is merely to associate separate three-point functions with each of two local
densities characteristic of a pair of points in a non-uniform electron gas. Rapcewicz
& Ashcroft (1990) have shown that when this procedure is applied to two isolated
atoms then van der Waals attraction between the two centres is recovered, and it
possesses essentially the correct magnitude. Incorporation of fluctuation therefore
leads to a significant correction to the results obtained by Gordon & Kim (1972) in
their study of attraction between closed shell atoms using functional methods but in
a strictly local approximation. This corroborates the general point being made that
functional approaches that omit fluctuations, represented here by only the simplest
nonlinear corrections to response, can err qualitatively in their predictions of
bonding.

Appendix A. Fluctuation and polarization in crystalline states

For crystalline states nuclear motion is usually described as an N -particle small
oscillation problem in the harmonic or self-consistent harmonic approximation. In a
Bravais lattice, the coordinate of an ion is normally written

Iy = R;+u,

where R; = (r;» is the equilibrium average of the coordinate, and defines one of the
N, sites of the crystal. For electronically rigid ions the first correction beyond the
terms normally defining the band-structure becomes (see (13¢))

LX e P (q) (iq-uy) wig). (29)

iq
However, if fluctuations in the ion are now restored, then (29) is replaced by

LY e R 50 (q)iq- (uy+dy/ Ze) (30)

iaq
to lowest order. This clearly displays the dual sources of polarization namely
displacive (ca. ;) from phonon polarization waves, and local fluctuation (ca. d, i/ Ze).
In a crystalline env1ronment the latter also admit of waves of polarization, but in a
different frequency range. The combination of the two in (30) shows very clearly the
possibility of interference, the more so for lower valent materials (Z = 1). In an ionic
crystal that is at the same time metallic the form of the electron coupling will differ
from (30) in that the monopole parts can substantially cancel (depending on relative
sizes of the positive and negative monopole charges). On the other hand, relative to
the motion of a cell centre of mass there will also be dipolar character coupling arising
from optic phonons in which these charges will now effectively add. Polar-optic
coupling can therefore be especially large

Typical values of {u? > and {(d, i/ 7e) 2%% to be associated with (27) are

<u]?>E = 0.24(r3/AZ)la,,
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where 4 is the nuclear mass number (a result which follows from the known moments
of the Coulomb harmonic problem), and

{(d;/ Ze)2)s ~ ay(2(ae/a0)?) (A(Ry))E,

where 4 is an average excitation energy of the ion whose polarizability is e. It is not
difficult, therefore, to envisage situations where these two sources of polarization lead
to (@) comparable coupling, (b) displacive coupling dominating internal fluctuation
(e.g. in the sp metals characterized by small a) and (c) internal fluctuation coupling
dominating displacive (large Z, and in metals with complete or incomplete but
polarizable d-shells). In the conventional view of electron pairing transitions (as in
the superconductive state) it has been common to regard phonon-polarization waves
(ca. u;) or the Frohlich interaction (Frohlich 1960) as the source of the requisite
electron coupling. The possibility that charge fluctuation (ca. dj/Ze might possibly
dominate was first put forward by Little (1964) and subsequently applied to systems
with itinerant and quasi-localized electrons by Geilikman (1965). An extensive
discussion of the interplay of both sources of coupling in the context of specific
materials, and especially layered compounds, has been given by Ginzburg &
Kirzhnits (1982).

For crystalline symmetry, the localized fluctuations can also be coherent, as
pointed out by Hopfield (1958), by Anderson (1963), by Lundqvist & Sjolander
(1963), and by Lucas (1968). The nature of such collective excitations parallels that
of the phonons; they are polarization waves resulting from dipolar coupled
fluctuations on each crystalline site. A single-particle band-structure can still be
defined for this case: it will arise by excerpting the zero-phonon-terms from the
normal mode structure that results from coupled polarization-wave systems. Then
the valence electron interaction term going beyond terms specifically included in
band-structure will not be (32) but rather

LY e @ exp(iq- R)) P (q)ig- (uy+dy/Ze). (33)
iaq
where W(g) is a Debye—Waller factor corresponding to the zero-phonon contributions
(Ashcroft 1989). Dynamics of both ion motion and internal charge then enter the
coupling implicitly and it is evident that inferences made in such cases from, say,
the isotope effect in super('onduetlwty, and that are based on u; alone can hardly be
complete.

In three dimensions, the fluctuational polarization-wave structure is typified by an
energy scale 4, and by a dispersion #(p, e2/m):. In contrast to this, the ordinary
plasmon in two dimensions has no energy gap at ¢ = 0. Accordingly one may expect
the coupled polarization wave system to disperse to ¢ =0 in a two-dimensional
crystalline metal with localized fluctuating charge. Such modes have the capability
of accepting arbitrarily small energies, as do acoustic phonons in three dimensions,
which should be of some significance in low-temperature electronic transport.
Though the collective dynamics of the two-dimensional electron gas are quite
different from the three-dimensional case, the arguments leading to fluctuation based
electronic attraction still carry through. It is general consequence of reduced
dimensionality that the role of fluctuations increases relative to that of mean field.
Thus, as Rapcewicz & Ashcroft (1990) show, the equlvalent of (30) leads to attraction
with long-ranged behaviour —73/7% (compared with —#%/7% in three dimensions). The
general arguments of Kohn & Luttinger (1965) then lead to the expectation of
unstable behaviour, most notably of a pairing character.
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Discussion

L. J. Suam (University of California, San Diego, U.S.A.). In the 1960s, Luttinger &
Kohn found an interaction term between electrons in the homogeneous electron gas
which cause [ > 0 Cooper pairing and, thus, a superconducting instability. What is
the relation between this interaction and the fluctuation term which Professor
Ashcroft discussed ?

N. W. AsacrorT. The term I was primarily discussing was the first of a ladder
sequence and corresponds to the first of the multipole terms that result when
fluctuations in normal static response is explicitly excepted from the totality of
nonlinear response terms. Kohn & Luttinger do indeed include nonlinear interactions
and one in particular is just the exchange modification of the fluctuating dipole—
dipole contribution developed in my paper. On length scales important for the
formation of a Cooper pair, this latter contribution is significantly attractive.
However, to determine the likely angular momentum state it is necessary to know
the form of the effective interaction at shorter length scales. This has not been settled
in detail, though it is clear on general grounds that for » < 27, (where the response
charge around each of a pair of electrons begins to overlap) the attractive character
must start to wash out.
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P. W. ANDERSON (Princeton, U.S.A.). (1) Is this effect to some extent responsible for
the high stability of certain heavy ions, so noticeable in oxide systems: such as Ba**,
La®*, Bi**? (2) With regard to long-range electron—electron forces, how can one
justify using the lowest-order polarization bubble at very low density when the series
is considered generally to be a series in powers of r,? Incidentally, my paper shows
that perturbation theory in general is in great difficulty in two dimensions in quite
a deep sense.

N. W. AsHOROFT. (1) The formation (and implied stability) of ions in a compound or
intermetallic is associated with a charge transfer process. The ionization energy
penalty that is paid is normally recouped from two sources, namely, electrostatic
Madelung energy (in the state of eventual charge transfer), and electron affinity
which impels the process in the first place. It is to electron affinity that my remarks
on fluctuational aspect most naturally apply here. An electron placed outside a
localized distribution of charge is attracted by an amount that depends on the nature
of the localized charge. If the electron is subsequently bound a new distribution
results with a new, and larger polarizability. A classic example is 0%,

(2) In fact the diagrams discussed were not of the bubble class, but of the ladder
class. The bubble class would lead to a normal static distribution of screening charge
around an electron, and as such this would be constrained by the perfect screening
sum-rule. The central physics of the effects being discussed here (as illustrated by the
first term in the ladder sequence) is that internal dynamic loops are rife. These are
not constrained by the rule, and because of this terms which have a formal order
higher than bubble equivalents can actually lead to larger effects. While the
expansion (in two or three dimensions) might well be questioned for, say,
thermodynamic functions, the focus here is on a specific subset of terms namely those
of a predominantly inverse power multipole character that contribute to an effective
interaction.

B. Covnrs (Imperial College, London, U.K.). Treatment of ion core fluctuations takes
the polarizability as a well-defined quantity, but it depends on energy denominators
which will be very different for Cu3d!® ion or 3d*°4s atom and the 3d full core in
copper metal. Does this make it impossible to use Professor Ashcroft’s approach to
calculate the full 3d shell contribution to cohesion of metallic copper ?

N. W. AsacrorT. The polarization a(w) that enters is the one appropriate to the
actual states of the system, here a metal where the electrons have been partitioned
into valence and localized. Since both energy denominators and matrix elements of
the dipole operator differ (for free ions and ions embedded in a metallic distribution
of valence electrons) the values of a(w) indeed reflect such differences. The changes
are discussed in some detail by Nieminen & Puska. A determination of the van der
Waals contribution to ion—ion potentials therefore merely requires a prior
determination of in situ ionic polarizabilities.

P. B. AvLex (SUNY, Stony Brook, New York, U.S.A.). There are multi-atom
fluctuation-induced interactions: the Axilrod—Teller term is the three-body analogue
of the van der Waals ¢ interaction. What are the relevance and properties of these
terms ?
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N. W. AsucrorT. Rapcewicz and I have argued that the successful determination of
long-range van der Waals attraction between a pair of atoms, starting only with the
properties of the homogeneous interacting electron gas, can be taken as supporting
evidence for the necessity to go beyond static response in the construction of effective
electron—electron interactions. If this view point is correct, then a simple logical
extension of the argument also has to be correct namely that a three-atom
interaction with the expected form should emerge when a third distribution of
localized charge is introduced into the previous pair. This is exactly what Rapcewicz
and I do discover: the three-atom interaction that emerges has precisely the
Axilrod—Teller form, and once again the magnitude is quite well given, starting from
electron gas information alone.
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